R Packages that start with:
A . B . C . D . E . F . G . H . I . J . K . L . M . N . O . P . Q . R . S . T . U . V . W . X . Y . Z .
Functions
- activation_relu()
- adapt()
- application_densenet()
- application_efficientnet()
- application_inception_resnet_v2()
- application_inception_v3()
- application_mobilenet()
- application_mobilenet_v2()
- application_mobilenet_v3()
- application_nasnet()
- application_resnet()
- application_vgg()
- application_xception()
- backend()
- bidirectional()
- callback_backup_and_restore()
- callback_csv_logger()
- callback_early_stopping()
- callback_lambda()
- callback_learning_rate_scheduler()
- callback_model_checkpoint()
- callback_progbar_logger()
- callback_reduce_lr_on_plateau()
- callback_remote_monitor()
- callback_tensorboard()
- callback_terminate_on_naan()
- clone_model()
- compile.keras.engine.training.Model()
- constraints()
- count_params()
- create_layer()
- create_layer_wrapper()
- create_wrapper()
- custom_metric()
- dataset_boston_housing()
- dataset_cifar10()
- dataset_cifar100()
- dataset_fashion_mnist()
- dataset_imdb()
- dataset_mnist()
- dataset_reuters()
- evaluate.keras.engine.training.Model()
- evaluate_generator()
- export_savedmodel.keras.engine.training.Model()
- fit.keras.engine.training.Model()
- fit_generator()
- fit_image_data_generator()
- fit_text_tokenizer()
- flow_images_from_data()
- flow_images_from_dataframe()
- flow_images_from_directory()
- freeze_weights()
- generator_next()
- get_config()
- get_file()
- get_input_at()
- get_layer()
- get_weights()
- grapes-py_class-grapes()
- grapes-set-active-grapes()
- hdf5_matrix()
- imagenet_decode_predictions()
- imagenet_preprocess_input()
- image_dataset_from_directory()
- image_data_generator()
- image_load()
- image_to_array()
- implementation()
- initializer_constant()
- initializer_glorot_normal()
- initializer_glorot_uniform()
- initializer_he_normal()
- initializer_he_uniform()
- initializer_identity()
- initializer_lecun_normal()
- initializer_lecun_uniform()
- initializer_ones()
- initializer_orthogonal()
- initializer_random_normal()
- initializer_random_uniform()
- initializer_truncated_normal()
- initializer_variance_scaling()
- initializer_zeros()
- install_keras()
- is_keras_available()
- keras-package()
- keras()
- KerasCallback()
- KerasConstraint()
- KerasLayer()
- KerasWrapper()
- keras_array()
- keras_model()
- keras_model_custom()
- keras_model_sequential()
- k_abs()
- k_all()
- k_any()
- k_arange()
- k_argmax()
- k_argmin()
- k_backend()
- k_batch_dot()
- k_batch_flatten()
- k_batch_get_value()
- k_batch_normalization()
- k_batch_set_value()
- k_bias_add()
- k_binary_crossentropy()
- k_cast()
- k_cast_to_floatx()
- k_categorical_crossentropy()
- k_clear_session()
- k_clip()
- k_concatenate()
- k_constant()
- k_conv1d()
- k_conv2d()
- k_conv2d_transpose()
- k_conv3d()
- k_conv3d_transpose()
- k_cos()
- k_count_params()
- k_ctc_batch_cost()
- k_ctc_decode()
- k_ctc_label_dense_to_sparse()
- k_cumprod()
- k_cumsum()
- k_depthwise_conv2d()
- k_dot()
- k_dropout()
- k_dtype()
- k_elu()
- k_epsilon()
- k_equal()
- k_eval()
- k_exp()
- k_expand_dims()
- k_eye()
- k_flatten()
- k_floatx()
- k_foldl()
- k_foldr()
- k_function()
- k_gather()
- k_get_session()
- k_get_uid()
- k_get_value()
- k_get_variable_shape()
- k_gradients()
- k_greater()
- k_greater_equal()
- k_hard_sigmoid()
- k_identity()
- k_image_data_format()
- k_int_shape()
- k_in_test_phase()
- k_in_top_k()
- k_in_train_phase()
- k_is_keras_tensor()
- k_is_placeholder()
- k_is_sparse()
- k_is_tensor()
- k_l2_normalize()
- k_learning_phase()
- k_less()
- k_less_equal()
- k_local_conv1d()
- k_local_conv2d()
- k_log()
- k_logsumexp()
- k_manual_variable_initialization()
- k_map_fn()
- k_max()
- k_maximum()
- k_mean()
- k_min()
- k_minimum()
- k_moving_average_update()
- k_ndim()
- k_normalize_batch_in_training()
- k_not_equal()
- k_ones()
- k_ones_like()
- k_one_hot()
- k_permute_dimensions()
- k_placeholder()
- k_pool2d()
- k_pool3d()
- k_pow()
- k_print_tensor()
- k_prod()
- k_random_bernoulli()
- k_random_normal()
- k_random_normal_variable()
- k_random_uniform()
- k_random_uniform_variable()
- k_relu()
- k_repeat()
- k_repeat_elements()
- k_reset_uids()
- k_reshape()
- k_resize_images()
- k_resize_volumes()
- k_reverse()
- k_rnn()
- k_round()
- k_separable_conv2d()
- k_set_learning_phase()
- k_set_value()
- k_shape()
- k_sigmoid()
- k_sign()
- k_sin()
- k_softmax()
- k_softplus()
- k_softsign()
- k_sparse_categorical_crossentropy()
- k_spatial_2d_padding()
- k_spatial_3d_padding()
- k_sqrt()
- k_square()
- k_squeeze()
- k_stack()
- k_std()
- k_stop_gradient()
- k_sum()
- k_switch()
- k_tanh()
- k_temporal_padding()
- k_tile()
- k_to_dense()
- k_transpose()
- k_truncated_normal()
- k_unstack()
- k_update()
- k_update_add()
- k_update_sub()
- k_var()
- k_variable()
- k_zeros()
- k_zeros_like()
- Layer()
- layer_activation()
- layer_activation_elu()
- layer_activation_leaky_relu()
- layer_activation_parametric_relu()
- layer_activation_relu()
- layer_activation_selu()
- layer_activation_softmax()
- layer_activation_thresholded_relu()
- layer_activity_regularization()
- layer_add()
- layer_additive_attention()
- layer_alpha_dropout()
- layer_attention()
- layer_average()
- layer_average_pooling_1d()
- layer_average_pooling_2d()
- layer_average_pooling_3d()
- layer_batch_normalization()
- layer_category_encoding()
- layer_center_crop()
- layer_concatenate()
- layer_conv_1d()
- layer_conv_1d_transpose()
- layer_conv_2d()
- layer_conv_2d_transpose()
- layer_conv_3d()
- layer_conv_3d_transpose()
- layer_conv_lstm_1d()
- layer_conv_lstm_2d()
- layer_conv_lstm_3d()
- layer_cropping_1d()
- layer_cropping_2d()
- layer_cropping_3d()
- layer_cudnn_gru()
- layer_cudnn_lstm()
- layer_dense()
- layer_dense_features()
- layer_depthwise_conv_1d()
- layer_depthwise_conv_2d()
- layer_discretization()
- layer_dot()
- layer_dropout()
- layer_embedding()
- layer_flatten()
- layer_gaussian_dropout()
- layer_gaussian_noise()
- layer_global_average_pooling_1d()
- layer_global_average_pooling_2d()
- layer_global_average_pooling_3d()
- layer_global_max_pooling_1d()
- layer_global_max_pooling_2d()
- layer_global_max_pooling_3d()
- layer_gru()
- layer_gru_cell()
- layer_hashing()
- layer_input()
- layer_integer_lookup()
- layer_lambda()
- layer_layer_normalization()
- layer_locally_connected_1d()
- layer_locally_connected_2d()
- layer_lstm()
- layer_lstm_cell()
- layer_masking()
- layer_maximum()
- layer_max_pooling_1d()
- layer_max_pooling_2d()
- layer_max_pooling_3d()
- layer_minimum()
- layer_multiply()
- layer_multi_head_attention()
- layer_normalization()
- layer_permute()
- layer_random_brightness()
- layer_random_contrast()
- layer_random_crop()
- layer_random_flip()
- layer_random_height()
- layer_random_rotation()
- layer_random_translation()
- layer_random_width()
- layer_random_zoom()
- layer_repeat_vector()
- layer_rescaling()
- layer_reshape()
- layer_resizing()
- layer_rnn()
- layer_separable_conv_1d()
- layer_separable_conv_2d()
- layer_simple_rnn()
- layer_simple_rnn_cell()
- layer_spatial_dropout_1d()
- layer_spatial_dropout_2d()
- layer_spatial_dropout_3d()
- layer_stacked_rnn_cells()
- layer_string_lookup()
- layer_subtract()
- layer_text_vectorization()
- layer_unit_normalization()
- layer_upsampling_1d()
- layer_upsampling_2d()
- layer_upsampling_3d()
- layer_zero_padding_1d()
- layer_zero_padding_2d()
- layer_zero_padding_3d()
- learning_rate_schedule_cosine_decay()
- learning_rate_schedule_cosine_decay_restarts()
- learning_rate_schedule_exponential_decay()
- learning_rate_schedule_inverse_time_decay()
- learning_rate_schedule_piecewise_constant_decay()
- learning_rate_schedule_polynomial_decay()
- loss-functions()
- loss_cosine_proximity()
- make_sampling_table()
- metric-or-Metric()
- Metric()
- metric_accuracy()
- metric_auc()
- metric_binary_accuracy()
- metric_binary_crossentropy()
- metric_categorical_accuracy()
- metric_categorical_crossentropy()
- metric_categorical_hinge()
- metric_cosine_proximity()
- metric_cosine_similarity()
- metric_false_negatives()
- metric_false_positives()
- metric_hinge()
- metric_kullback_leibler_divergence()
- metric_logcosh_error()
- metric_mean()
- metric_mean_absolute_error()
- metric_mean_absolute_percentage_error()
- metric_mean_iou()
- metric_mean_relative_error()
- metric_mean_squared_error()
- metric_mean_squared_logarithmic_error()
- metric_mean_tensor()
- metric_mean_wrapper()
- metric_poisson()
- metric_precision()
- metric_precision_at_recall()
- metric_recall()
- metric_recall_at_precision()
- metric_root_mean_squared_error()
- metric_sensitivity_at_specificity()
- metric_sparse_categorical_accuracy()
- metric_sparse_categorical_crossentropy()
- metric_sparse_top_k_categorical_accuracy()
- metric_specificity_at_sensitivity()
- metric_squared_hinge()
- metric_sum()
- metric_top_k_categorical_accuracy()
- metric_true_negatives()
- metric_true_positives()
- model_from_saved_model()
- model_to_json()
- model_to_saved_model()
- model_to_yaml()
- multi-assign()
- multi_gpu_model()
- new-classes()
- new_learning_rate_schedule_class()
- normalize()
- optimizer_adadelta()
- optimizer_adagrad()
- optimizer_adam()
- optimizer_adamax()
- optimizer_ftrl()
- optimizer_nadam()
- optimizer_rmsprop()
- optimizer_sgd()
- pad_sequences()
- pipe()
- plot.keras.engine.training.Model()
- plot.keras_training_history()
- pop_layer()
- predict.keras.engine.training.Model()
- predict_generator()
- predict_on_batch()
- predict_proba()
- reexports()
- regularizer_l1()
- regularizer_orthogonal()
- reset_states()
- save_model_hdf5()
- save_model_tf()
- save_model_weights_hdf5()
- save_model_weights_tf()
- save_text_tokenizer()
- sequences_to_matrix()
- sequential_model_input_layer()
- serialize_model()
- skipgrams()
- summary.keras.engine.training.Model()
- texts_to_matrix()
- texts_to_sequences()
- texts_to_sequences_generator()
- text_dataset_from_directory()
- text_hashing_trick()
- text_one_hot()
- text_tokenizer()
- text_to_word_sequence()
- timeseries_dataset_from_array()
- timeseries_generator()
- time_distributed()
- to_categorical()
- train_on_batch()
- use_implementation()
- with_custom_object_scope()
- zip_lists()
R Codes
- activations.R
- applications.R
- backend.R
- callbacks.R
- constraints.R
- datasets.R
- freeze.R
- history.R
- initializers.R
- install.R
- layer-attention.R
- layer-custom.R
- layer-methods.R
- layer-wrappers.R
- Layer.R
- layers-activations.R
- layers-convolutional.R
- layers-core.R
- layers-dropout.R
- layers-embedding.R
- layers-features.R
- layers-locally-connected.R
- layers-merge.R
- layers-noise.R
- layers-normalization.R
- layers-pooling.R
- layers-preprocessing.R
- layers-recurrent-cells.R
- layers-recurrent.R
- learning_rate_schedules.R
- losses.R
- metrics-callback.R
- metrics.R
- model-custom.R
- model-legacy.R
- model-persistence.R
- model.R
- new-py-types.R
- optimizers.R
- package.R
- preprocessing.R
- py-classes.R
- reexports.R
- regularizers.R
- seed.R
- timeseries.R
- utils.R
- wrapper_custom.R
- zzz.R
Selected R package: keras
Click on the specific functions, references or examples using the links on the left
This will display the example document in this panel! Call for submissions of examples for R packages. Contribute today!